CHARACTERIZING ALGEBRAIC CURVES WITH INFINITELY MANY INTEGRAL POINTS
نویسندگان
چکیده
منابع مشابه
Affine Curves with Infinitely Many Integral Points
Let C ⊂ An be an irreducible affine curve of (geometric) genus 0 defined by a finite family of polynomials having integer coefficients. In this note we give a necessary and sufficient condition for C to possess infinitely many integer points, correcting a statement of J. H. Silverman (Theoret. Comput. Sci., 2000). Let C be an irreducible affine curve of (geometric) genus 0 in the affine space A...
متن کاملOn Certain Plane Curves with Many Integral Points
0. In the course of another investigation we came across a sequence of polynomials Pd ∈ Z[x, y], such that Pd is absolutely irreducible, of degree d, has low height and at least d + 2d + 3 integral solutions to Pd(x, y) = 0. We know of no other family of polynomials of increasing degree with as many integral (or even rational) solutions in terms of their degree, except of course those with infi...
متن کاملAlgebraic curves over F2 with many rational points
A smooth, projective, absolutely irreducible curve of genus 19 over F2 admitting an infinite S-class field tower is presented. Here S is a set of four F2-rational points on the curve. This is shown to imply that A(2) = limsup#X(F2)/g(X) ≥ 4/(19 − 1) ≈ 0.222. Here the limit is taken over curves X over F2 of genus g(X)→∞.
متن کاملCurves with many points
Introduction. Let C be a (smooth, projective, absolutely irreducible) curve of genus g > 2 over a number field K. Faltings [Fa1, Fa2] proved that the set C(K) of K-rational points of C is finite, as conjectured by Mordell. The proof can even yield an effective upper bound on the size #C(K) of this set (though not, in general, a provably complete list of points); but this bound depends on the ar...
متن کاملUncomputably large integral points on algebraic plane curves?
We show that the decidability of an amplification of Hilbert’s Tenth Problem in three variables implies the existence of uncomputably large integral points on certain algebraic curves. We obtain this as a corollary of a new positive complexity result: the Diophantine prefixes ∃∀∃ and ∃∃∀∃ are generically decidable. This means, taking the former prefix as an example, that we give a precise geome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2009
ISSN: 1793-0421,1793-7310
DOI: 10.1142/s1793042109002274